Sporadicity: Between periodic and chaotic dynamical behaviors.

نویسندگان

  • P Gaspard
  • X J Wang
چکیده

We define the class of sporadic dynamical systems as the systems where the algorithmic complexity of Kolmogorov [Kolmogorov, A. N. (1983) Russ. Math. Surv. 38, 29-40] and Chaitin [Chaitin, G. J. (1987) Algorithmic Information Theory (Cambridge Univ. Press, Cambridge, U.K.)] as well as the logarithm of separation of initially nearby trajectories grow as n(v(0) )(log n)(v(1) ) with 0 < v(0) < 1 or v(0) = 1 and v(1) < 0 as time n --> infinity. These systems present a behavior intermediate between the multiperiodic (v(0) = 0, v(1) = 1) and the chaotic ones (v(0) = 1, v(1) = 0). We show that intermittent systems of Manneville [Manneville, P. (1980) J. Phys. (Paris) 41, 1235-1243] as well as some countable Markov chains may be sporadic and, furthermore, that the dynamical fluctuations of these systems may be of Lévy's type rather than Gaussian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM

We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...

متن کامل

LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS

‎In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$‎ ‎for finite discrete $X$ with at least two elements‎, ‎infinite countable set $Gamma$ and‎ ‎arbitrary map $varphi:GammatoGamma$‎, ‎the following statements are equivalent‎: ‎ - the dynamical system $(X^Gamma,sigma_varphi)$ is‎ Li-Yorke chaotic;‎ - the dynamical system $(X^Gamma,sigma_varphi)$ has‎ an scr...

متن کامل

Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review

The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...

متن کامل

Analysis of chaotic vibration in a hexagonal centrifugal governor system

In this paper, the periodic, quasi periodic and chaotic responses of rotational machines with a hexagonal centrifugal governor are studied. The external disturbance is assumed as a sinusoid effect. By using the forth order Rung-Kutta numerical integration method, bifurcation diagram, largest Lyapunov exponent and Lyapunov dimension are calculated and presented to detect the critical controlling...

متن کامل

Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays.

Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 13  شماره 

صفحات  -

تاریخ انتشار 1988